Prediction intervals for future BMI values of individual children - a non-parametric approach by quantile boosting

نویسندگان

  • Andreas Mayr
  • Torsten Hothorn
  • Nora Fenske
چکیده

BACKGROUND The construction of prediction intervals (PIs) for future body mass index (BMI) values of individual children based on a recent German birth cohort study with n = 2007 children is problematic for standard parametric approaches, as the BMI distribution in childhood is typically skewed depending on age. METHODS We avoid distributional assumptions by directly modelling the borders of PIs by additive quantile regression, estimated by boosting. We point out the concept of conditional coverage to prove the accuracy of PIs. As conditional coverage can hardly be evaluated in practical applications, we conduct a simulation study before fitting child- and covariate-specific PIs for future BMI values and BMI patterns for the present data. RESULTS The results of our simulation study suggest that PIs fitted by quantile boosting cover future observations with the predefined coverage probability and outperform the benchmark approach. For the prediction of future BMI values, quantile boosting automatically selects informative covariates and adapts to the age-specific skewness of the BMI distribution. The lengths of the estimated PIs are child-specific and increase, as expected, with the age of the child. CONCLUSIONS Quantile boosting is a promising approach to construct PIs with correct conditional coverage in a non-parametric way. It is in particular suitable for the prediction of BMI patterns depending on covariates, since it provides an interpretable predictor structure, inherent variable selection properties and can even account for longitudinal data structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Optimal Non-Parametric Prediction Intervals for Order Statistics with Random Sample Size

‎ In many experiments, such as biology and quality control problems, sample size cannot always be considered as a constant value. Therefore, the problem of predicting future data when the sample size is an integer-valued random variable can be an important issue. This paper describes the prediction problem of future order statistics based on upper and lower records. Two different cases for the ...

متن کامل

Boosting structured additive quantile regression for longitudinal childhood obesity data.

Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-f...

متن کامل

Outer and Inner Confidence Intervals Based on Extreme Order Statistics in a Proportional Hazard Model

Let Mi and Mi be the maximum and minimum of the ith sample from k independent sample with different sample sizes, respectively. Suppose that the survival distribution function of the ith sample is F ̄i = F ̄αi, where αi is known and positive constant. It is shown that how various exact non-parametric inferential proce- ′ dures can be developed on the basis of Mi’s and Mi ’s for distribution ...

متن کامل

BAYES PREDICTION INTERVALS FOR THE BURR TYPE XI1 DISTRIBUTION IN THE PRESENCE OF OUTLIERS

Using a sample fiom Burr type XU distribution, Bayes prediction intervals are derived for the maximum and minimum of a future sample fromthe same distribution, but in the presence of a single outlier of the type 8,8. The prior of Q is assumed to be the gamma conjugate. A real example is given to illustrate the procedure. Also, the comparison between the values of the prediction bounds for dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012